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Two integral theorems are proved which are applicable to the motion of an 
incompressible fluid in three dimensions. From either of these theorems one can 
derive the monopole component of the pressure fluctuation a t  infinity when a bubble 
undergoes non-spherical oscillations. The results confirm and generalize some recent 
calculations of this effect (Longuet-Higgins 1989~) .  They also provide a basis for a 
physical discussion of the origin of the monopole terms. 

1. Introduction 
In  two recent papers, Longuet-Higgins (1989a, b ) ,  the author studied the far-field 

pressure due to the finite-amplitude distortions of an air bubble in an unbounded 
fluid, and showed that such oscillations can produce a monopole component of the 
pressure a t  infinity; the pressure varies as l/r, where r is the radial distance. In 
compressible fluids such as water, such pressure fluctuations may be responsible for 
the production of a significant level of underwater sound. 

It was shown, in Longuet-Higgins (1989a), that the monopole component of the 
pressure can be related to the spherically averaged motion of the fluid in the 
neighbourhood of the bubble. This fact led the author to examine whether there exist 
any more general integral properties of the irrotational motion of a perfect fluid from 
which the pressure fluctuations at  infinity can be derived. 

The author has found two such integral properties which are described in $33 and 
4 below. The first relation [A, equation (3.11)] was derived quite independently by 
Benjamin (1987), using a Hamiltonian formulation. In the present paper, we give an 
alternative and more elementary proof. The method is the same as was used earlier 
to derive some integral theorems for flow in two dimensions (Longuet-Higgins 1983). 

The second integral theorem [B, equations (4.8), (4.9) or (4.10)] also yields the 
pressure fluctuation p ,  a t  infinity, more directly than theorem A. The application of 
this result to asymmetric bubble oscillations is given in $5. 

Both theorems A and B provide a means of extending previous calculations and 
results to other bubble configurations. I n  addition, we show in $6 that theorem B 
gives an insight into the physical origin of the monopole pressure terms. 

t On leave from the Department of Applied Mathematics and Theoretical Physics, University 
of Cambridge, Silver Street, Cambridge CB3 9EW, UK. 
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2. The method 
As in Longuet-Higgins (1983) [hereafter called (I)], we use Lagrangian coordinates 

x attached to a fixed particle in the fluid. We have then 

and 

- V@, Dx 
Dt 
_-  

D 
Dt 
- (V@) = - vp 

~ = @@)2-p', p i  = p - p , ,  
D@ 
Dt (2.3) 

where @ is the velocity potential, assumed to tend to 0 at infinity, p will denote the 
pressure and p ,  the ambient pressure a t  infinity. Note that (2.3) follows from 
Bernoulli's equation, together with the relation D@/Dt = @t + (VCD)~ (cf. Longuet- 
Higgins & Cokelet 1976). 

Fourthly, we have the equation of continuity 

V2@ = 0. (2.4) 

We make use of the following relation : i fS is any surface moving with the fluid and 
enclosing a volume V ,  and P is any smooth function of x and t ,  then 

As in (I), we may define the total mass m, the centre of mass X, the momentum 
or impulse Z, the angular momentum A and the kinetic energy KE by 

By setting F = 1, x ,  V@, x h V@ and $(V@)z in turn we derive 

dm dx 
-- - 0, m-= I ,  
dt dt 

dZ dA 
- dt = - J J p n M ,  - dt = - J J x h p n a ,  

where n denotes the unit normal to the surface S.  
We shall imagine these and later results applied to  the fluid contained between an 

interior cavity, or bubble, with surface S, and an exterior surface S,, which will be 
allowed to tend to infinity. 
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3. Theorem A 
I n  (2.5) let us take F = V - (xQ,). From (2.1) and (2.2) we have, since V - x = 3, 

D D 
Dt Dt 
- v .  (XQ,) = -(3Q,+x. VQ,) 

= 3[fr(VQ,)2-p’]+[(VQ,)2-x - Vp’] 

= g(v@)”v * (xp’). (3.1) 

So by (2.5) 

Hence 

But as r - f  m, Q, = O ( l / r ) ,  and so if we use (2.3) we have 

Hence writing 

where the integral is over the surface of the bubble, we obtain 

-- dB - 5KE + I,.. . ?I ds. 
dt 

(3.3) 

(3.5) 

The last term in (3.6) can be evaluated as follows. On the bubble surface we have 

p = p , - l V . n ,  (3.7) 
where p ,  is the air pressure in the bubble, T is the surface tension and n is the unit 
normal to the bubble?. So we have 

Now from purely geometrical arguments (see the Appendix) we have 

and 

x . n d S  = 3VB 

[ [ (V.n)x .ndS = 2S,, 

(3.9) 

(3.10) 
J J  

where V, and S, denote the volume and surface area of the bubble. Therefore (3.6) 
can also be written -1 (3.11) 

4. Theorem B 
Unlike (3.2) which can be applied without restriction to any part of the fluid, we 

prove now a second theorem which requires the existence of a bubble, or a t  least a 
cavity devoid of fluid, where the origin 0 may be taken. 

t See Lamb (1932, p. 474). Here n is considered as the unit normal to a family of surfaces 
G(r ,  t )  = 0, of which S,  and S,  are both members. 
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r = 1x1. Let us define the radial distance 

Dx 
Dt Dt 
D 1 2  - -($- ) - x- = x * V@ Then we have 

by (2.1) and so 
D2 
- (1r2) = (VCD)~-X - Vp 
Dt2 

by (2.2). We have also the identity 

Since x . Vp = rpr it follows from (4.3) and (4.4) that  

1 V@)2 - 3@," 
r3 

Now an element of volume may be written 

dV = r2 dr dQ, 

(4.3) 

(4.5) 

where dSZ is an element of solid angle SZ subtended a t  the origin, i.e. an element of 
the surface of a unit sphere centred on 0. So on integrating (4.5) over the volume V 
we find 

D2 ~2dSZ+SSl~(v@)2-3m:1.'d.d0. (4.8) 
L B P d Q  = @JJSA-% 

Hence 

If we use a bar to denote spherical averages, this may be written 

2 1 @] = D[Q]+ Dt2 
. 

(4.9) 

On either of the two moving surfaces we may write r = a+q, with a constant and 
7 the radial displacement. Then the first term on the right of (4.9) becomes 
(D2/Dt2)(aq+q). Now as r+ 00 so a is of order r and r,~ is 0(rp2), if we assume @ is 
a t  most O(r - l )  at infinity. Hence this term tends to zero and in the limit we obtain 

where a denotes the equilibrium radius of the bubble and p s  is given by 

(4.10) 

as in (3.7). p s = p B - T V - n  (4.11) 
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5. Application to bubble oscillations 
We shall now apply the foregoing results to evaluate the monopole pressure term 

due to the oscillations of distorted bubbles in an infinite fluid. For this purpose, either 
(3.11) or (4.10) may be used. Equation (4.10), however, is slightly more direct.? 

We assume the pressure p ,  in the bubble to be related to the equilibrium pressure 

by the gas law 

where V, is the volume and y is the ratio of the specific heats. Correct to second order, 
this becomes 

where for convenience we have written 

(5.3) PB = pO(1-3yE//a), 

ii = T+pi/a. (5.4) 

(For a distortion mode, Eis of second order in the displacement.) The surface-tension 
term in (3.7) is in general given, to second order, by 

where V i  denotes the surface Laplacian (see Longuet-Higgins 1989a, $4). On 
substituting these expressions into (4.10) and rearranging terms we obtain 

where (5.7) 

Note that o is the radian frequency of the radial mode of oscillation of the bubble. 
Now the right-hand side of (5.6) is bilinear in the displacement 7 and velocity 

potential @, and may be evaluated immediately to  second order, knowing only the 
first-order (linear) expressions for 7 and @. Moreover, since h is proportional to the 
volume change in the bubble, it follows by conservation of mass that the 
displacement at infinity is equal to (a/r)2E. Hence, the pressure fluctuation at infinity 
is given by 

a2 D2L 
P2 = ym. (5.8) 

For example, if we take the normal-mode oscillation given, to first order, by 

with 
T 
a3 

c7; = (n - l ) (n+ l ) (n+2) -  (5.10) 

t Note added in prooj. Benjamin (1989) has independently used (3.11). 
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(see Lamb 1932, $275) and substitute into the right-hand side of (5.6) we obtain 
immediately a function of the time t ,  proportional to  A:. Since any spherical 

(5.11) 
harmonic S, satisfies vis, = --n(n+ l)S, 

equation (5.6) yields 
= M c o s 2 c ~ ~ t + N ,  (5.12) 

where M = f(n- 1) (n+ 2) (4n- 1 ) q A 2 , 2 ,  

(5.13) 
T 
a3 

N =  -g(n-l)(n+2)s542,-- .  

From (5.12) it follows that 
N cos 2cr, t - - h =  

a ( 4 4  - w 2 )  a d  
and so, from (5.8), the pressure fluctuation a t  infinity is 

M 

For the axisymmetric modes, for example, we have 

sn(e,#) = Pn(cos8) 

(5.14) 

(5.15) 

(5.16) 

and 

It will be seen that (5.14) and (5.15) agree precisely 
Higgins (1989 a) .  

(5.17) 

with (6.26) and (7.1) of Longuet- 

6. The limit of plane waves 
The unattenuated pressure term for surface waves in deep water can also be 

derived from (4.9). For we have in general 

' D2 [[[r '  dr  dO = 0 D2 - 
Dt2 a 4zDt2 
-[+S] = -- 

by conservation of mass in the fluid. Writing r = a+q as before, we obtain 

On allowing the radius a to go to infinity, (4.9) reduces to 

D2 - 
P,+PA-Ps = -(l  Dt2 fl ) *  

This is the same expression for the unattenuated pressure in surface gravity waves 
as was given by Longuet-Higgins & Ursell (1948), apart from a constant static term 
which is negligible in the case of small bubbles. Equation (6.3) shows that the 
unattenuated pressure p ,  is related to  changes in the potential energy of the surface 
waves, or equivalently to changes in the level of the centre of mass of the fluid as 
a whole. 
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This result amplifies a comment as to the physical cause of the monopole pressure 
term in bubble oscillations (Longuet-Higgins 1989a, 97) .  It is not the change in 
volume of the bubble which is the dynamical cause of the monopole pressures. 
Rather, the second-order pressure arising from the term D2/Dt2($F), together with 
the surface-tension terms, causes radial displacements at infinity which then produce 
volume changes in the bubble. 

A simple analogy may make the point clearer. Imagine a rigid, rectangular box of 
mass M which is suspended vertically from some fixed point by a very long spring. 
Inside the box is a small mass m suspended by a shorter spring from the upper face 
of the box. The mass m is displaced from its equilibrium position and the whole 
system oscillates vertically. Now one could say that the lower face of the box 
oscillates because it is attached to the upper face by the rigid vertical walls of the box. 
This would be a kinematic description. On the other hand, it makes more sense to say 
that the whole box is in oscillation because of the oscillation of the mass m relative 
to the upper face of the box. This would be a more dynamical description. 

In  the above analogy, the upper face of the box corresponds to the bubble surface, 
the lower face corresponds to the fluid at infinity, and the massesMand m correspond 
to the intervening fluid. 

Note that if the box were laid on a rigid flat table, there would still be an oscillating 
force between the box and the table, even if there were no motion of the box. 
Similarly, if the fluid surrounding the bubble were encased in a large rigid sphere, 
allowing no radial movement at this distance, there would still be an oscillating 
pressure on the outer sphere, without any change in the volume of air within the 
bubble. 

Note added in proof. In  a very recent paper, Benjamin (1989) has pointed out that 
if the internal cavity were filled not with air but with an incompressible liquid then 
there would be no monopole component of the pressure at infinity. But this does not 
mean that the pressure fluctuations ‘arose from’ the changes in volume of the 
bubble. Rather, inserting the liquid places an additional constraint on the motion of 
the external fluid. I n  the above analogy it corresponds to clamping the upper face 
of the rectangular box, so that there is no vertical displacement of the box as a 
whole. 

Appendix. Proof of equations (3.7) and (3.8) 
Equation (3.7) follows immediately from the divergence theorem : 

To prove equation (3.8) note that 

2n . [(x * V) n] = (x * V) (n - n) = 0 

since n is a unit vector. Therefore 

which is to say 

But 

[[[[V . n + (x V) (V n)] d V = 0. 
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On subtracting (A 4) from (A 5 )  we obtain 

by the divergence theorem. Since n n = 1 the result follows. 
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Research and Development Fund. I am indebted to Dr R. Fitzgerald and Dr M. Orr 
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REFERENCES 
BENJAMIN, T. B. 1987 Hamiltonian theory for motions of bubbles in an infinite liquid. J .  Fluid 

BENJAMIN, T. B. 1989 Note on shape oscillations of bubbles. J .  Fluid Mech. 203, 41S424. 
LAMB, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press, 632 pp. 
LONQUET-HIGGINS, M. S. 1983 On integrals and invariants for inviscid, irrotational flow under 

LONQUET-HIGQINS, M. S. 1989a Monopole emission of sound by asymmetric bubble oscillations. 

LONQUET-HIGOINS, M. S. 1989 b Monopole emission of sound by asymmetric bubble oscillations. 

LONQUET-HIGGINS, M. S. & COKELET, E. D. 1976 The deformation of steep surface waves. I. A 

LONQUET-HIGGINS, M. S. & URSELL, F, 1948 Sea waves and microseisms. Nature 162, 7OCk701. 

Mech. 181, 349-379. 

gravity. J .  Fluid Mech. 134, 155-159. 

I. Normal modes. J .  Fluid Mech. 201, 525-541. 

11. An initial-value problem. J .  Fluid Mech. 201, 543-565. 

numerical method of computation. Proc. R .  Soc. Lond. A 350, 1-26. 


